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Abstract

A novel and complete methodology is presented to deduce a newly discovered (third type) steady state pyrolysis (ablation) rate on a
composite material consisting of a pyrolysing material with inert backing when the composite material is exposed to a constant heat flux.
The other two commonly known steady pyrolysis rates manifest when the pyrolysing material is thermally thick and when the temper-
ature throughout the pyrolysing material is equal to its pyrolysis temperature. The value of the third type steady pyrolysis rate is accu-
rately determined in terms of the thermal and pyrolysis properties of the composite material together with a delineation of the conditions
under which it can be attained. The results are significant both for designing heat shields and for investigating the pyrolysis properties of
materials in cone calorimeter type apparatus.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In a recent paper [1] Lin discovered a new steady state
ablation (pyrolysis) rate solution for an ablating (pyroly-
sing) material supported on an inert substrate material,
where a constant heat flux is applied on the ablating mate-
rial and both materials have finite thickness with the inert
material insulated at its back surface. The new steady state
supplements two other steady state solutions one when the
pyrolysing material is thermally thick (regression velocity
V2) and the other when its temperature is uniform and
equal to the pyrolysis temperature (regression velocity
V1) [2,3]. The new solution applies after a long unsteady
period from the beginning of the pyrolysis process when
the thickness of the pyrolysing material has been reduced.
However, Lin [1] was not quite sure in his paper under
what conditions the new solution applies. We present a
new derivation of this steady state solution to show that
this solution exists at late times assuming that (a) the
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regression velocity (V3) at this stage is less than the maxi-
mum possible regression velocity (V1) which would occur
if the temperature of the pyrolysing material was equal to
its pyrolysis temperature and (b) the ratio of the thermal
inertia of the pyrolysing material over its value for the inert
material is less than one (i.e. k1q1c1/k2q2c2 < 1). The latter
restriction is much milder than the requirement in [1] that
the thermal inertia ratio should be much less than one
(i.e. k1q1c1/k2q2c2� 1), and the steady state solution is dif-
ferent from the one reported in [1]. However, the new
steady solution will be reached if the transient time (start-
ing when interaction occurs with the inert layer) towards
this solution is less than the time required for the materials
to completely pyrolyse. The present derivation also illus-
trates the physics in a more transparent way than in Lin’s
paper [1].

In addition to the significance for ablation [1], the pres-
ent results apply for thermoplastics materials that behave
as assumed in the paper, especially for test methods in fire
research that essentially reproduce the situation of this
paper. The basic test method is the cone calorimeter where
a sample 100 � 100 mm is exposed to a constant heat flux
in a nitrogen or ambient air atmosphere [3]. The sample is
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Fig. 2. Single inert layer heat transfer situation.
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contained in a holder and the sample’s back surface is insu-
lated or in contact with a conductive material [3].

2. Methodology

We consider the same geometry as in [1] but the termi-
nology is sometimes the one more commonly used in fire
science. The ablating (pyrolysing) layer (denoted by the
subscript 1) lies on an inert material (denoted by the sub-
script 2) as shown in Fig. 1. A constant heat flux _q00ex is
applied on the top of the ablating material. The back sur-
face of the inert material is insulated. The thermal proper-
ties of the ablating and inert material are denoted as
k1, q1, c1 and k2, q2, c2, respectively. The latent heat of
ablation pyrolysis is denoted as L. Perfect contact between
the two-layers is assumed because the system represents a
composite material.

We analyze first the inert layer considering a time depen-
dent heat flux applied on it. This heat flux may for example
represent the heat flux at the interface between the pyroly-
sing and the inert region. We show using a novel derivation
that at late times greater than the diffusion penetration time
‘2

2=a2, the imposed transient heat flux is proportional to the
rate of change of temperature at its top surface multiplied
by the heat capacity of the inert layer. This proportionality
constant is equal to one for time varying polynomial heat
fluxes but different from one for time varying exponential
heat fluxes which are relevant to the present situation.
Then, we use this condition for the back surface of the pyr-
olysing layer to find the new steady state regression solu-
tion for the pyrolysing layer.

2.1. The inert layer

A time varying heat flux _q002ðtÞ is applied on the front sur-
face as shown in Fig. 2. The initial temperature is constant
throughout the layer.

The normalized heat transfer equations are:

oh
ot
¼ o

2h
ox2

where t ¼ a2s

‘2
2

and x ¼ g
‘2

ð1aÞ

where h = (T(x, t) � T0)/T0 with T0 being the initial refer-
ence temperature, s is the dimensional time, and g is the
distance from the top surface of the inert layer.
Pyrolysing layer of thickness 1

Inert layer of thickness of 2

Insulating surface 

Fig. 1. A composite material consisting of an ablating (pyrolysing) layer
and an inert insulated substrate.
The boundary conditions are:

�oh
ox

����
x¼0

¼ _q002‘2

k2T 0

¼ q002;F and � oh
ox

����
x¼1

¼ q00B ð1bÞ

To solve Eq. (1) we use first a special Laplace transform
in space,

h
_

ðs; tÞ ¼
Z 1

0

e�sxhðx; tÞdx ð2Þ

so that Eq. (1a) becomes:

o h
_

ot
¼ s2 h

_

þ �q00B þ shx¼1

� �
e�s � �q002;F þ shx¼0

� �n o
ð3Þ

This equation can be formally solved in the time domain
as:

h
_

ðs; tÞ ¼ es2t

Z t

0

e�s2sGðs; sÞdx ð4aÞ

where the function G represents the term in big parenthesis
in Eq. (3):

G ¼ �q00B þ shx¼1

� �
e�s � �q002;F þ shx¼0

� �n o
ð4bÞ

By using now the Laplace transform in time:

H ¼
Z 1

0

e�ut h
_

ðs; tÞdt ð4cÞ

Eq. (4) becomes:

H ¼
R1

0
e�utGðs; tÞdt
u� s2

ð5Þ

Because this equation has to be finite for s ¼ � ffiffiffiffi
u
p

the
numerator must be equal to zero for these values. Thus,
we obtain:Z 1

0

e�ut �q00B þ hx¼1

ffiffiffiffi
/

p� �
e�
ffiffiffi
u
p
� �q002;F þ hx¼0

ffiffiffiffi
/

p� �n o
dt

¼ 0 ð6aÞ

andZ 1

0

e�ut �q00B � hx¼1

ffiffiffiffi
/

p� �
e�
ffiffiffi
u
p
� �q002;F þ hx¼0

ffiffiffiffi
/

p� �n o
dt

¼ 0 ð6bÞ
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Fig. 3. Variation with time of the ratio q2c2‘2
dðT ðx;sÞÞx¼0

ds

.
q002ðsÞ when the

heat flux is exponential with time q002 ¼ es=s1 ¼ et=t1 where t ¼ a2s=‘
2
2. At

large times the ratio takes a constant value, which depends on the growth
rate 1/t1.
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or in terms of Laplace transform in time (i.e. Eq. (4c)) these
relations become:

�Q00Be�
ffiffiffi
u
p
þHx¼1

ffiffiffiffi
/

p
e�

ffiffiffi
/
p
þ Q002;F �Hx¼0

ffiffiffiffi
/

p
¼ 0 ð7aÞ

and

�Q00Be
ffiffiffi
/
p
�Hx¼1

ffiffiffiffi
/

p
e
ffiffiffi
/
p
þ Q002;F þHx¼0

ffiffiffiffi
/

p
¼ 0 ð7bÞ

Here the capital letters represent the Laplace transform in
time (Eq. (4c)) of the underlying quantities which are only
function of time. Eqs. (7a) and (7b) are general expressions
and provide the surface and interface temperatures and
hear fluxes if two of these quantities are given. For the
present case in Fig. 2, the back surface is insulated (i.e.
Q00B � 0Þ and elimination of the temperature Hx=1 from
Eqs. (7a) and (7b) gives the transformed heat flux as a func-
tion of the transformed heat flux at the surface:

Q002;F ¼ Hx¼0

ffiffiffiffi
/

p e
ffiffiffi
/
p
� e�

ffiffiffi
/
p

e
ffiffiffi
/
p
þ e

ffiffiffi
/
p ð7cÞ

It is possible to find the long time ðt ¼ a2s=‘
2
2 � 1Þ

behaviour of the underlying quantities of the time Laplace
transform in Eq. (7c) by noting that this behaviour in the
Laplace domain corresponds to small values of Laplace
variable /. Using simple expansion and keeping only the
first order term, Eq. (7c) gives the following relation:

Q002;F ¼ /Hx¼0 ð8aÞ

In the time domain, this gives the relation for large times
between the heat flux and the temperature at the front
surface:

q002;F ðtÞ ¼
dhx¼0

dt
for t!1 ð8bÞ

or in terms of dimensional quantities (see Eqs. (1a) and
(1b))

q002ðtÞ ¼ q2c2‘2

dðT ðx; tÞÞx¼0

ds
for t!1 ð8cÞ

or more precisely,

q2c2‘2

dðT ðx; tÞÞx¼0

ds

�
q002ðtÞ ! 1 for t!1 ð8dÞ

Further examination showed that Eq. (8d) is correct
only if the time variation of heat flux is a power law but
it needs modification if the time variation of heat flux is
exponential, which is a relevant case for the present prob-
lem. If the dimensionless heat flux varies as et=t1 , its time
Laplace transform is 1/(/ � 1/t1) and from Eq. (7c) the
Laplace transform of temperatures at large times (i.e. small
/) is:

Hg¼0 ¼
1

/� 1=t1

1þ 1

3
/� 1

45
/2 þ . . .

	 

ð9aÞ

where we have retained second terms in the expansion for
small /.
If we invert Eq. (9a) by setting / = 1/t1 in the parenthe-
sis of Eq. (9a) and taking the time derivative we find that:

dhx¼0

dt

�
q002;F ðtÞ ! 1þ 1

3

1

t1

� 1

45

1

t1

	 
2

þ . . . ð9bÞ

where q002;F ðtÞ ¼ et=t1 ð9cÞ

or in terms of dimensional quantities:

RATIO ¼ q2c2‘2

dðT ðx; sÞÞx¼0

ds

�
q002ðsÞ

! 1þ 1

3

1

t1

� 1

45

1

t1

	 
2

þ . . . ð9dÞ

and

t1 ¼ a2s1=‘
2
2 ð9eÞ

This is a crucial result of this paper. Namely, we conclude
that the long term behaviour of the ratio at the left hand
side (LHS) of Eq. (9d) is a constant which is function of
the growth factor (1/t1) in the exponential variation of
the heat flux but not equal to one. The results of Eqs.
(9d) and (9e) were also verified numerically as Figs. 3–5
illustrate.

Fig. 3 shows the variation with time of the sensible heat

to the imposed heat flux q2c2‘2
dðT ðx;sÞÞx¼0

ds

.
q002ðsÞ

� �
when an

exponential heat flux is applied on the surface of the inert
material. This ratio takes on for large times a constant
value which depends on the growth factor 1/t1 in consis-
tency with the analytical solution for large times, i.e. Eq.
(9d). It is noted for future exploitation that the transient
time to reach the asymptotic solution increases as the
growth factor decreases to a value about t ¼ a2s=‘

2
2 ¼ 0:3.

The asymptotic steady values of the ratio

q2c2‘2
dðT ðx;sÞÞx¼0

ds

.
q002ðsÞ are plotted as a function of the

growth factor 1/t1 in Figs. 4 and 5 for two different ranges
of the growth factor, i.e. 0 to 10 and 0 to 1, respectively.
The results in Fig. 5 verify the analytical Eq. (9d) for small
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Fig. 6. The (top) ablating/pyrolysing layer.
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values of 1/t1, whereas the results in Fig. 4 show that the

ratio q2c2‘2
dðT ðx;sÞÞx¼0

ds =q002ðsÞ varies as the square root of

the growth factor ð
ffiffiffiffiffiffiffiffiffi
1=t1

p
Þ for large values of 1/t1. In

summary:

q2c2‘2
dðT ðx; sÞÞx¼0

ds

�
q002ðsÞ ! Gð1=t1Þ ð10aÞ

where

Gð1=t1Þ ¼ 1þ 1

3

1

t1

� 1

45

1

t1

	 
2

þ . . . for 1=t1 � 1 ð10bÞ

Gð1=t1Þ ¼
ffiffiffiffiffiffiffiffiffi
1=t1

p
for 1=t1 � 1 ð10cÞ

The result of Eq. (10c) can also be derived directly from
Eq. (7c) by noting that / > 1/t1� 1 so that
Q002;F ¼ Hx¼0

ffiffiffiffi
/
p

, and hence following the same procedure
in deriving Eq. (9b) from Eq. (9a).

This long time behaviour of the ratio q2c2‘2
dðT ðx;sÞÞx¼0

ds

.
q002ðsÞ, as shown by Eq. (10a) and Figs. 4 and 5, is employed

in the next sections as the boundary condition at the inter-
face (see Fig. 1) to resolve the behaviour of the ablating
(pyrolysing) layer at late times following its exposure to a
constant heat flux.

2.2. The ablating/pyrolysing layer at late times

The ablating/pyrolysing layer is examined in dimen-
sional coordinates as shown in Fig. 6 just before regression
starts but assuming that the back boundary condition is
determined by Eqs. (10a) and (10b) and the results in Figs.
4 and 5.

The heat transfer equation and the boundary conditions
are:

oT
os
¼ a1

o2T
og2

ð11aÞ

A steady regression solution with a rate V3 is examined
for its existence.

The boundary condition at the receding surface is:

�k1

oT
og
¼ _q00ext � q1LV 3 at g ¼ front ¼ V 3s ð11bÞ

and

T ¼ T p ¼ pyrolysis temperature at g ¼ front ¼ V 3s

ð11cÞ
Here ‘1 is the original thickness of the layer when the pres-
ent steady solution applies. If a steady state regression (V3)
solution exists it must have the following form [1–3]:

T p � T ¼ C0ð1� e�fg�V 3sg=dÞ ð11dÞ
where the thermal depth is d ¼ a1=V 3 ð11eÞ

Eq. (11d) satisfies the boundary condition (11c) and the
constant, C0, is determined from the boundary condition
(11b) as:

C0

d
¼ _q00ext � q1LV 3 ð11fÞ

The solution Eq. (11d) is realistic if the temperature is less
than the pyrolysis temperature everywhere and if the tem-
perature at the interface is greater than the initial tempera-
ture T0. The first condition requires C0 being positive and
the second condition requires the original thickness being
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Fig. 7. Dimensionless regression history for H = 1 and the other
properties stated in the legend. Eq. (1a) defines all the parameters in the
legend.
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less than a certain value. Mathematically these conditions
are represented by:

_q00ext � q1LV 3 > 0 or V 3 <
_q00ext

q1L
¼ V 1 ð12aÞ

T p � T 0 < C0ð1� e�‘1=dÞ ð12bÞ

To combine this solution with the heat transfer into the
inert sub-layer, we highlight from the solution Eq. (11d) the
following boundary condition at the back surface of the
pyrolysing layer, i.e. the interface with the inert layer:

� oT intðg; sÞ
og

¼ q002ðsÞ
k1

¼ 1

V 3

oT intðg; sÞ
os

at

g ¼ ‘1 ðand at x ¼ 0 of the inert layerÞ ð12cÞ

We note by using (11d) and (12c) that the heat flux at
the interface q002ðsÞ is an exponential function of time with
a growth rate s1 ¼ d

V 3
¼ a1

V 2
3

, i.e. q002ðsÞ / esa1=V 2:
3 . Applying

the results of the previous section by inserting Eq. (12c)
into Eq. (10a) we obtain:

q2c2‘2

dðT ðx; sÞÞx¼0

ds

�
q002ðsÞ ¼

V 3

k1=q2c2‘2

! Gð1=t1Þ ð13aÞ

where the dimensionless growth factor t1 (using the scaling
for the inert layer) is:

t1 ¼
a2s1

‘2
2

¼ a2a1

‘2
2V 2

3

ð13bÞ

By defining a reference velocity as:

V r ¼ k1=q2c2‘2 ð13cÞ
Eqs. (13a) and (13b) take the forms:

V 3

k1=q2c2‘2

¼ V 3

V r
¼ Gð1=t1Þ ð14aÞ

where t1 ¼
a2s1

‘2
2

¼ a2a1

‘2
2V 2

3

¼ V r

V 3

	 
2 k2q2c2

k1q1c1

ð14bÞ

The function G in Eq. (14a) is given asymptotically by Eqs.
(10b) and (10c) and the complete numerical results are plot-
ted in Figs. 4 and 5.

2.3. Determination of the new regression velocity

Eq. (14a), together with the definition of the function G

from Eqs. (10b) and (10c), determines the ratio V3/Vr = X

from which the new regression velocity is found using the
definition of the reference velocity in Eq. (13c). Specifically,
Eq. (14a) is written as:

V 3

k1=q2c2‘2

¼ V 3

V r
¼ X ¼ Gð1=t1Þ ¼ G X 2 k1q1c1

k2q2c2

	 

ð15aÞ

From the approximate behaviour of the function G for
small and large values of its argument (i.e. Eqs. (10b)
and (10c)), it can be seen that there is a solution of Eq.
(15a) only if the ratio of the thermal inertia parameter is
less than one, i.e.:
k1q1c1

k2q2c2

¼ TIP < 1 ð15bÞ

In general Eq. (15a) implies that the steady regression
velocity V3 is a function of the TIP, namely:

V 3

k1=q2c2‘2

¼ V 3

V r
¼ X ¼ function of

k1q1c1

k2q2c2

	 

ð15cÞ

For small values of the argument of G, Eq. (15a) becomes
following Eq. (10b):

X ¼ G X 2 k1q1c1

k2q2c2

	 

¼ 1þ 1

3
X 2 k1q1c1

k2q2c2

¼ 1þ 1

3
X 2TIP ð15dÞ

whose solution representing the solution of Eq. (15a) for
small values is:

X ¼ V 3

V r
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ðTIPÞ=3

p
2ðTIPÞ=3

ð15eÞ

This approximate solution is a good approximation up to
TIP = 0.5, after which its accuracy compared to the exact
solution decreases. The exact solution of Eq. (15a) using
the numerical form of the function G is given in Appendix
A.

The analytical solution results for the ratio V3/Vr are
consistent with the results in [1] and verified by Figs. 7–9.
Figs. 7 and 8 show the history of regression velocity for
several sets of parameters normalized by using the proper-
ties of layer 2 as in [1] and defined here as:

H ¼ q1L
_q00ext

a2

‘2

; U ¼ T � T p

‘2 _q00ext=k1

; A ¼ a1

a2

;

K ¼ k1

k2

and S ¼ ‘1

‘2

ð16aÞ

The normalized regression velocity and time which are the
coordinates in Figs. 7 and 8 are defined as:

~V ¼ V ‘2

a2

and t ¼ a2s

‘2
2

ð16bÞ
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Figs. 7 and 8 present the numerical regression velocity as
a function of time for the same properties of the composite
layer except the latent heat flux being H = 1 for Fig. 7 and
H = 5 for Fig. 8. In both situations after pyrolysis starts, a
steady regression velocity V2 exists corresponding to ther-
mally thick conditions before the pyrolysing layer interacts
with the inert layer:

~V 2 ¼
V 2‘2

a2

¼ ‘2

a2

_q00ext

q1ðLþ c1ðT p � T 0ÞÞ
¼ 1

H � U 0=A
ð17Þ
where we have applied the definitions of Eq. (16).
At some point in Figs. 7 and 8 when the thermal depth

a1/V2 is equal to the thickness of the pyrolysing layer, the
influence of the inert layer emerges and the regression
velocity diverges from the value V2. The new steady state
pyrolysis develops in several cases whereas in the rest of
the cases the pyrolysing material is consumed before the
steady state is attained.

The steady state regression solutions are plotted in
Fig. 9 in terms of the normalized velocity V3/Vr against
the inverse thermal inertia parameter, 1/TIP. Not only
there is good correlation of the data but even the approxi-
0.9

1

1.1

1.2

1 10
1/

V
3/

 V
r

Fig. 9. Steady state regression velocity against the inverse
mate analytical solution, Eq. (15e), agrees very well with
the numerical results.

In conclusion, we have shown that (a) the regression
velocity at the late stages can exist for values of TIP < 1
and not only for TIP� 1 as [1] suggests and (b) its value
can be greater than the reference velocity V > Vr = k1/q2

c2‘2 in contrast to [1] where V = Vr is suggested. In the next
section, we propose the conditions under which this late
stage velocity has time to be reached before the pyrolysing
material is consumed.
2.4. Existence of the late stage steady pyrolysis rate

This section discusses the conditions under which a
steady pyrolysis rate might occur late in the pyrolysis pro-
cess and the conditions this state can be actually reached
during the heating and pyrolysis of a composite material
as depicted in Fig. 1.

The first set of conditions have been obtained in the
analysis up to this point and summarized as:

1. The thermal inertia parameter TIP must be less than one
(see discussion related to Eqs. (15a) and (15b)):

k1q1c1

k2q2c2

¼ TIP < 1 ð18aÞ

2. The late steady velocity and initial thickness of the pyr-
olysing region, when this velocity applies, should satisfy
the following relations (see discussion related to Eqs.
(12a) and (12b)):

V 3 <
_q00ext

q1L
¼ V 1 ð18bÞ

T p � T 0 <
a1

V 3

_q00ext � q1LV 3

� �
ð1� e�‘1=dÞ ð18cÞ

If the conditions delineated by Eqs. (18a), (18b), and
(18c) are satisfied, then the steady state velocity V3 is
defined by Eqs. (15a)–(15d). But even if these conditions
100 1000
TIP

A=0.001, H=20
A=0.002, H=5
A=0.002, H=20
Correlation (Eq. 15e)

TIP. Eq. (1a) defines all the parameters in the legend.
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are met, the steady state pyrolysis at late stages may not
be reached because there are not sufficient times for
these conditions to establish.

The significant times for the pyrolysis process of the com-
posite material are:

1. The time for the inert layer to reach the state for which
the ratio q2c2‘2

dðT ðx;sÞÞx¼0

ds

.
q002ðsÞ (see Fig. 2) is constant.

This time is of the order of the diffusion time in the inert
layer:

s1 ¼
‘2

2

a2

ð19aÞ

2. The time for the steady state velocity to change from V2

(the regression velocity for thermally thick conditions)
to V3 the new late stage steady solution. Here, we con-
sider only the cases that a steady state regression solu-
tion develops corresponding to thermally thick
conditions before interaction with the inert layer leads
to the new regression velocity. The interaction with the
inert layer occurs when the thickness of the pyrolysing
layer is equal to the thermal thickness of the pyrolysing
layer:

d ¼ a1

V 2

ð19bÞ

and the time of transition would be of the order:

s2 ¼ d=V 2 ¼
a1

V 2
2

ð19cÞ

This result can also be found from a rather simplified en-
ergy integral balance in the pyrolysing layer.

3. The time for the pyrolysing material to be completely
consumed. This time consists of the time needed for
the pyrolysing material to pyrolyse plus the time needed
for the inert layer to be heated to the conditions corre-
sponding at the end of the pyrolysing process. Namely,
this time will be:

stotal ¼
‘1

V 2

þ Q00

_q00ext

ð19dÞ

where the heat accumulated per unit surface area in the
inert material at the end of pyrolysis is given by:

Q00 ¼ q2c2‘2ðT p � T 0Þ �
1

3
_q00ext � q1LV 3

� �
ð19eÞ

This relation was derived in a similar way as in [1] by
approximating the profile of temperature in the inert
material as a parabolic profile which is appropriate for
values of TIP� 1. For comparison with the other times,
we should evaluate the complete pyrolysis time after
interaction of the pyrolysing layer with the inert layer
starts namely when the thickness of the pyrolysing layer
is d ¼ ‘1 ¼ a1=V 2. It follows that the relevant time for
complete consumption of the pyrolysing layer will be:

s3 ¼
a1

V 2
2

þ
q2c2‘2ðT p � T 0Þ � 1

3
_q00ext � q1LV 3

� �
_q00ext

ð19fÞ

or

s3 ¼
a1

V 2
2

þ q2c2‘2ðT p � T 0Þ
_q00ext

� 1

3
ð1� V 3=V 1Þ ð19gÞ

The late stage solution will be attained if there is suffi-
cient time for the inert layer to reach its asymptotic
behaviour and the transition time to the late stage
regression rate is less than the consumption time of
the pyrolysing material. This statement is expressed by
the requirement that:

s1 < s2 < s3 ð20Þ

Examination of the numerical data in [1] and numerical
data in this work support the applicability of Eq. (20)
as an order of magnitude relation. The first part of
the inequality in Eq. (20) is the most critical for a steady
late stage solution to be attained or to be developing
but not reached because the pyrolysing material is
consumed.
3. Conclusions

The major contributions of this work are:

� The new steady state solution discovered by Lin [1] has a
much greater range of applicability being possible for
the thermal inertia parameter k1q1c1

k2q2c2
¼ TIP < 1 and not

�1 as proposed by Lin [1].
� The regression velocity at the new steady state condi-

tions, is a function of the TIP and higher than the veloc-
ity proposed in [1].
� The new steady state solution is attainable if there is suf-

ficient time for the inert layer to reach its asymptotic
behaviour and the transition time to the late stage
regression rate is less than the consumption time of
the pyrolysing material, as expressed by Eq. (20).
� In developing the present analysis a new method was

applied to obtain the long term heating behaviour of
the inert layer culminating to the relation given by Eq.
(7c), and the asymptotic result at the interface given
by Eqs. (10a)–(10c).

We must reiterate here hat in addition to the significance
for ablation [1], the present results apply for thermoplastics
materials that behave as assumed in the paper, especially
for test methods in fire research that essentially reproduce
the situation of this paper. The basic test method is the
cone calorimeter where a sample 100 � 100 mm is exposed
to a constant heat flux in a nitrogen or ambient air atmo-
sphere [3]. The sample is contained in a holder and the
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sample’s back surface is insulated or in contact with a con-
ductive material [3].

Appendix A. Complete solution of Eq. (15a) for V3/Vr

Eq. (15a) is written as:

V 3

V r
¼ G

V 3

V r

	 
2 k1q1c1

k2q2c2

" #
ðA1Þ

or by using the relation 1
t1
¼ G V 3

V r

� �2
k1q1c1

k2q2c2
, we have:

V 3

V r
¼

ffiffiffiffiffiffiffiffiffi
1=t1

TIP

r
¼ G

1

t1

	 

ðA2Þ

The right hand side (RHS) of Eq. (A2) is determined for
the total range of 1/t1(0 ?1) numerically (see Figs. 4
and 5), and is plotted in Fig. A1. Superimposed on this,
the LHS of Eq. (A2) is plotted for various values of TIP
from 0 to 1 in Fig. A1. The interception of these curves
gives the solution of Eq. (A2), which is plotted in Fig. A2.

The late stage velocity is found for V 3

V r
¼

ffiffiffiffiffiffi
1=t1
TIP

q
, and is

plotted in Fig. A3, together with the approximate solution
given by Eq. (15e). The agreement between these two solu-
tions, i.e. the ‘‘exact” and the approximate, is very good up
to a value of TIP = 0.5.
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Fig. A1. Numerical result of G(1/t1) and a geometrical view of the
dimensionless velocity V 3=V r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=t1=TIP

p
with TIP from 0.2 to 1.0,

representing the solution of Eq. (A1).
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Fig. A3. Dimensionless velocity V3/Vr derived from the intercepts of the
numerical result and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
with TIP from 0.1 to 0.95, and from the

analytical solution (see Eqs. (A1) and (A2)).
References

[1] F.S. Lin, Steady ablation on the surface of a two-layer composite, Int.
J. Heat Mass Transfer 48 (2005) 5504–5519.

[2] Y. Chen, M.A. Delichatsios, V. Motevalli, Material Pyrolysis Prop-
erties Part I, Combust. Sci. Technol. 88 (1993) 309–328.

[3] J. Zhang, J. Hereid, M. Hagen, D. Bakirtzis, M.A. Delichatsios,
Numerical and experimental investigation of ignition and pyrolysis of
Polyamide nylon nanocomposites, 11th European Meeting on Fire
Retardant Polymers, Bolton, 2007 (also submitted for publication in
Fire and Materials).


	Pyrolysis of a finite thickness composite material
	Introduction
	Methodology
	The inert layer
	The ablating/pyrolysing layer at late times
	Determination of the new regression velocity
	Existence of the late stage steady pyrolysis rate

	Conclusions
	Complete solution of Eq. (15a) for V3/Vr
	References


